Mister Exam

Other calculators

Integral of sqrt(1+a^2*exp(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |     _____________   
 |    /      2  2*x    
 |  \/  1 + a *e     dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sqrt{a^{2} e^{2 x} + 1}\, dx$$
Integral(sqrt(1 + a^2*exp(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
                             /     /       _____________\        _____________      /        _____________\             
                             |     |      /      2  2*x |       /      2  2*x       |       /      2  2*x |       2     
                             |- log\1 + \/  1 + a *e    / + 2*\/  1 + a *e     + log\-1 + \/  1 + a *e    /  for a  != 0
  /                          <                                                                                          
 |                           |                                     / 2*x\                                               
 |    _____________          |                                  log\e   /                                     otherwise 
 |   /      2  2*x           \                                                                                          
 | \/  1 + a *e     dx = C + -------------------------------------------------------------------------------------------
 |                                                                        2                                             
/                                                                                                                       
$$-{{\log \left(\sqrt{a^2\,e^{2\,x}+1}+1\right)}\over{2}}+{{\log \left(\sqrt{a^2\,e^{2\,x}+1}-1\right)}\over{2}}+\sqrt{a^2\,e^{2\,x}+ 1}$$
The answer [src]
/                    /       ________\      /        ___________\                    /       ___________\      /        ________\                                  
|   ___________      |      /      2 |      |       /      2  2 |      ________      |      /      2  2 |      |       /      2 |                                  
|  /      2  2    log\1 + \/  1 + a  /   log\-1 + \/  1 + a *e  /     /      2    log\1 + \/  1 + a *e  /   log\-1 + \/  1 + a  /                                  
<\/  1 + a *e   + -------------------- + ------------------------ - \/  1 + a   - ----------------------- - ---------------------  for And(a > -oo, a < oo, a != 0)
|                          2                        2                                        2                        2                                            
|                                                                                                                                                                  
\                                                               1                                                                             otherwise            
$$-{{\log \left(\sqrt{e^2\,a^2+1}+1\right)}\over{2}}+{{\log \left(1- \sqrt{e^2\,a^2+1}\right)}\over{2}}+{{\log \left(\sqrt{a^2+1}+1 \right)}\over{2}}-{{\log \left(1-\sqrt{a^2+1}\right)}\over{2}}+ \sqrt{e^2\,a^2+1}-\sqrt{a^2+1}$$
=
=
/                    /       ________\      /        ___________\                    /       ___________\      /        ________\                                  
|   ___________      |      /      2 |      |       /      2  2 |      ________      |      /      2  2 |      |       /      2 |                                  
|  /      2  2    log\1 + \/  1 + a  /   log\-1 + \/  1 + a *e  /     /      2    log\1 + \/  1 + a *e  /   log\-1 + \/  1 + a  /                                  
<\/  1 + a *e   + -------------------- + ------------------------ - \/  1 + a   - ----------------------- - ---------------------  for And(a > -oo, a < oo, a != 0)
|                          2                        2                                        2                        2                                            
|                                                                                                                                                                  
\                                                               1                                                                             otherwise            
$$\begin{cases} - \sqrt{a^{2} + 1} + \sqrt{a^{2} e^{2} + 1} - \frac{\log{\left(\sqrt{a^{2} + 1} - 1 \right)}}{2} + \frac{\log{\left(\sqrt{a^{2} + 1} + 1 \right)}}{2} + \frac{\log{\left(\sqrt{a^{2} e^{2} + 1} - 1 \right)}}{2} - \frac{\log{\left(\sqrt{a^{2} e^{2} + 1} + 1 \right)}}{2} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\1 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.