Mister Exam

Other calculators


sqrt(1+(9x/4))

Integral of sqrt(1+(9x/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      _________   
 |     /     9*x    
 |    /  1 + ---  dx
 |  \/        4     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{\frac{9 x}{4} + 1}\, dx$$
Integral(sqrt(1 + 9*x/4), (x, 0, 1))
The answer (Indefinite) [src]
  /                                  3/2
 |                          /    9*x\   
 |     _________          8*|1 + ---|   
 |    /     9*x             \     4 /   
 |   /  1 + ---  dx = C + --------------
 | \/        4                  27      
 |                                      
/                                       
$${{8\,\left({{9\,x}\over{4}}+1\right)^{{{3}\over{2}}}}\over{27}}$$
The graph
The answer [src]
            ____
  8    13*\/ 13 
- -- + ---------
  27       27   
$${{13^{{{3}\over{2}}}}\over{27}}-{{8}\over{27}}$$
=
=
            ____
  8    13*\/ 13 
- -- + ---------
  27       27   
$$- \frac{8}{27} + \frac{13 \sqrt{13}}{27}$$
Numerical answer [src]
1.43970987337155
1.43970987337155
The graph
Integral of sqrt(1+(9x/4)) dx

    Use the examples entering the upper and lower limits of integration.