Mister Exam

Other calculators


sqrt(1+8x)

Integral of sqrt(1+8x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 1 + 8*x  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{8 x + 1}\, dx$$
Integral(sqrt(1 + 8*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (1 + 8*x)   
 | \/ 1 + 8*x  dx = C + ------------
 |                           12     
/                                   
$$\int \sqrt{8 x + 1}\, dx = C + \frac{\left(8 x + 1\right)^{\frac{3}{2}}}{12}$$
The graph
The answer [src]
13/6
$$\frac{13}{6}$$
=
=
13/6
$$\frac{13}{6}$$
13/6
Numerical answer [src]
2.16666666666667
2.16666666666667
The graph
Integral of sqrt(1+8x) dx

    Use the examples entering the upper and lower limits of integration.