Integral of sqrt(1+8x) dx
The solution
Detail solution
-
Let u=8x+1.
Then let du=8dx and substitute 8du:
∫8udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=8∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 12u23
Now substitute u back in:
12(8x+1)23
-
Add the constant of integration:
12(8x+1)23+constant
The answer is:
12(8x+1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ (1 + 8*x)
| \/ 1 + 8*x dx = C + ------------
| 12
/
∫8x+1dx=C+12(8x+1)23
The graph
Use the examples entering the upper and lower limits of integration.