Mister Exam

Other calculators


sqrt(1+8x)

Integral of sqrt(1+8x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 1 + 8*x  dx
 |                
/                 
0                 
018x+1dx\int\limits_{0}^{1} \sqrt{8 x + 1}\, dx
Integral(sqrt(1 + 8*x), (x, 0, 1))
Detail solution
  1. Let u=8x+1u = 8 x + 1.

    Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

    u8du\int \frac{\sqrt{u}}{8}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu8\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{8}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: u3212\frac{u^{\frac{3}{2}}}{12}

    Now substitute uu back in:

    (8x+1)3212\frac{\left(8 x + 1\right)^{\frac{3}{2}}}{12}

  2. Add the constant of integration:

    (8x+1)3212+constant\frac{\left(8 x + 1\right)^{\frac{3}{2}}}{12}+ \mathrm{constant}


The answer is:

(8x+1)3212+constant\frac{\left(8 x + 1\right)^{\frac{3}{2}}}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (1 + 8*x)   
 | \/ 1 + 8*x  dx = C + ------------
 |                           12     
/                                   
8x+1dx=C+(8x+1)3212\int \sqrt{8 x + 1}\, dx = C + \frac{\left(8 x + 1\right)^{\frac{3}{2}}}{12}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
13/6
136\frac{13}{6}
=
=
13/6
136\frac{13}{6}
13/6
Numerical answer [src]
2.16666666666667
2.16666666666667
The graph
Integral of sqrt(1+8x) dx

    Use the examples entering the upper and lower limits of integration.