Mister Exam

Integral of sqrt(1-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/2              
  /               
 |                
 |    _________   
 |  \/ 1 - 2*x  dx
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{1}{2}} \sqrt{1 - 2 x}\, dx$$
Integral(sqrt(1 - 2*x), (x, 0, 1/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (1 - 2*x)   
 | \/ 1 - 2*x  dx = C - ------------
 |                           3      
/                                   
$$\int \sqrt{1 - 2 x}\, dx = C - \frac{\left(1 - 2 x\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
1/3
$$\frac{1}{3}$$
=
=
1/3
$$\frac{1}{3}$$
1/3
Numerical answer [src]
0.333333333333333
0.333333333333333

    Use the examples entering the upper and lower limits of integration.