Mister Exam

Other calculators

Integral of sqrt((9*x^2-1)/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       __________   
 |      /    2        
 |     /  9*x  - 1    
 |    /   --------  dx
 |  \/       x        
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sqrt{\frac{9 x^{2} - 1}{x}}\, dx$$
Integral(sqrt((9*x^2 - 1)/x), (x, 0, 1))
The answer [src]
               _                 
              |_  /-1/2, 1/4 |  \
I*Gamma(1/4)* |   |          | 9|
             2  1 \   5/4    |  /
---------------------------------
           2*Gamma(5/4)          
$$\frac{i \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9} \right)}}{2 \Gamma\left(\frac{5}{4}\right)}$$
=
=
               _                 
              |_  /-1/2, 1/4 |  \
I*Gamma(1/4)* |   |          | 9|
             2  1 \   5/4    |  /
---------------------------------
           2*Gamma(5/4)          
$$\frac{i \Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle| {9} \right)}}{2 \Gamma\left(\frac{5}{4}\right)}$$
i*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 9)/(2*gamma(5/4))
Numerical answer [src]
(1.3254041863597 + 1.00822121109135j)
(1.3254041863597 + 1.00822121109135j)

    Use the examples entering the upper and lower limits of integration.