Integral of sqrt(9-3x^2) dx
The solution
Detail solution
SqrtQuadraticRule(a=9, b=0, c=-3, context=sqrt(9 - 3*x**2), symbol=x)
-
Now simplify:
23(x3−x2+3asin(33x))
-
Add the constant of integration:
23(x3−x2+3asin(33x))+constant
The answer is:
23(x3−x2+3asin(33x))+constant
The answer (Indefinite)
[src]
/ / ___\
| __________ ___ |x*\/ 3 |
| __________ / 2 3*\/ 3 *asin|-------|
| / 2 x*\/ 9 - 3*x \ 3 /
| \/ 9 - 3*x dx = C + --------------- + ---------------------
| 2 2
/
2323arcsin(3x)+2x9−3x2
The graph
/ ___\
___ |\/ 3 |
___ 3*\/ 3 *asin|-----|
\/ 6 \ 3 /
----- + -------------------
2 2
2323arcsin(31)+6
=
/ ___\
___ |\/ 3 |
___ 3*\/ 3 *asin|-----|
\/ 6 \ 3 /
----- + -------------------
2 2
26+233asin(33)
Use the examples entering the upper and lower limits of integration.