Mister Exam

Other calculators

Integral of (sqrt(ln(x+1)))/(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |    ____________   
 |  \/ log(x + 1)    
 |  -------------- dx
 |      x + 1        
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{\sqrt{\log{\left(x + 1 \right)}}}{x + 1}\, dx$$
Integral(sqrt(log(x + 1))/(x + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |   ____________               3/2       
 | \/ log(x + 1)           2*log   (x + 1)
 | -------------- dx = C + ---------------
 |     x + 1                      3       
 |                                        
/                                         
$$\int \frac{\sqrt{\log{\left(x + 1 \right)}}}{x + 1}\, dx = C + \frac{2 \log{\left(x + 1 \right)}^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
     3/2   
2*log   (2)
-----------
     3     
$$\frac{2 \log{\left(2 \right)}^{\frac{3}{2}}}{3}$$
=
=
     3/2   
2*log   (2)
-----------
     3     
$$\frac{2 \log{\left(2 \right)}^{\frac{3}{2}}}{3}$$
2*log(2)^(3/2)/3
Numerical answer [src]
0.384721920924093
0.384721920924093

    Use the examples entering the upper and lower limits of integration.