Mister Exam

Other calculators

Integral of sqrt((4x+1)/(4x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      _________   
 |     / 4*x + 1    
 |    /  -------  dx
 |  \/     4*x      
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{\frac{4 x + 1}{4 x}}\, dx$$
Integral(sqrt((4*x + 1)/((4*x))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                         
 |                                                          
 |     _________               /    ___\     ___   _________
 |    / 4*x + 1           asinh\2*\/ x /   \/ x *\/ 1 + 4*x 
 |   /  -------  dx = C + -------------- + -----------------
 | \/     4*x                   4                  2        
 |                                                          
/                                                           
$$\int \sqrt{\frac{4 x + 1}{4 x}}\, dx = C + \frac{\sqrt{x} \sqrt{4 x + 1}}{2} + \frac{\operatorname{asinh}{\left(2 \sqrt{x} \right)}}{4}$$
The answer [src]
  ___        /  ___\
\/ 5    acosh\\/ 5 /
----- + ------------
  2          4      
$$\frac{\operatorname{acosh}{\left(\sqrt{5} \right)}}{4} + \frac{\sqrt{5}}{2}$$
=
=
  ___        /  ___\
\/ 5    acosh\\/ 5 /
----- + ------------
  2          4      
$$\frac{\operatorname{acosh}{\left(\sqrt{5} \right)}}{4} + \frac{\sqrt{5}}{2}$$
sqrt(5)/2 + acosh(sqrt(5))/4
Numerical answer [src]
1.47894285727931
1.47894285727931

    Use the examples entering the upper and lower limits of integration.