Mister Exam

Other calculators

Integral of ((sqrt(2x)-3)*cos2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                          
  /                          
 |                           
 |  /  _____    \            
 |  \\/ 2*x  - 3/*cos(2*x) dx
 |                           
/                            
0                            
$$\int\limits_{0}^{0} \left(\sqrt{2 x} - 3\right) \cos{\left(2 x \right)}\, dx$$
Integral((sqrt(2*x) - 3)*cos(2*x), (x, 0, 0))
The answer (Indefinite) [src]
                                                      /                                                   _                       \
  /                                                   |                       3/2                        |_  /   1/4, 3/4   |   2\|
 |                                                    |          /    ___\   x   *Gamma(1/4)*Gamma(3/4)* |   |              | -x ||
 | /  _____    \                   3*sin(2*x)     ___ |    ____  |2*\/ x |                              2  3 \1/2, 5/4, 7/4 |    /|
 | \\/ 2*x  - 3/*cos(2*x) dx = C - ---------- + \/ 2 *|x*\/ pi *C|-------| - -----------------------------------------------------|
 |                                     2              |          |   ____|                  4*Gamma(5/4)*Gamma(7/4)               |
/                                                     \          \ \/ pi /                                                        /
$$\int \left(\sqrt{2 x} - 3\right) \cos{\left(2 x \right)}\, dx = C + \sqrt{2} \left(- \frac{x^{\frac{3}{2}} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) {{}_{2}F_{3}\left(\begin{matrix} \frac{1}{4}, \frac{3}{4} \\ \frac{1}{2}, \frac{5}{4}, \frac{7}{4} \end{matrix}\middle| {- x^{2}} \right)}}{4 \Gamma\left(\frac{5}{4}\right) \Gamma\left(\frac{7}{4}\right)} + \sqrt{\pi} x C\left(\frac{2 \sqrt{x}}{\sqrt{\pi}}\right)\right) - \frac{3 \sin{\left(2 x \right)}}{2}$$
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.