Integral of sqrt(2sin(x)-1)*(cos(x)) dx
The solution
Detail solution
-
Let u=2sin(x)−1.
Then let du=2cos(x)dx and substitute 2du:
∫2udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 3u23
Now substitute u back in:
3(2sin(x)−1)23
-
Now simplify:
3(2sin(x)−1)23
-
Add the constant of integration:
3(2sin(x)−1)23+constant
The answer is:
3(2sin(x)−1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| ______________ (2*sin(x) - 1)
| \/ 2*sin(x) - 1 *cos(x) dx = C + -----------------
| 3
/
∫2sin(x)−1cos(x)dx=C+3(2sin(x)−1)23
The graph
_______________ _______________
\/ -1 + 2*sin(1) I 2*\/ -1 + 2*sin(1) *sin(1)
- ----------------- + - + --------------------------
3 3 3
−3−1+2sin(1)+32−1+2sin(1)sin(1)+3i
=
_______________ _______________
\/ -1 + 2*sin(1) I 2*\/ -1 + 2*sin(1) *sin(1)
- ----------------- + - + --------------------------
3 3 3
−3−1+2sin(1)+32−1+2sin(1)sin(1)+3i
-sqrt(-1 + 2*sin(1))/3 + i/3 + 2*sqrt(-1 + 2*sin(1))*sin(1)/3
(0.188144900963713 + 0.333094621053717j)
(0.188144900963713 + 0.333094621053717j)
Use the examples entering the upper and lower limits of integration.