Mister Exam

Other calculators

Integral of sqrt(2sin(x)-1)*(cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |    ______________          
 |  \/ 2*sin(x) - 1 *cos(x) dx
 |                            
/                             
0                             
012sin(x)1cos(x)dx\int\limits_{0}^{1} \sqrt{2 \sin{\left(x \right)} - 1} \cos{\left(x \right)}\, dx
Integral(sqrt(2*sin(x) - 1)*cos(x), (x, 0, 1))
Detail solution
  1. Let u=2sin(x)1u = 2 \sin{\left(x \right)} - 1.

    Then let du=2cos(x)dxdu = 2 \cos{\left(x \right)} dx and substitute du2\frac{du}{2}:

    u2du\int \frac{\sqrt{u}}{2}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu2\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{2}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: u323\frac{u^{\frac{3}{2}}}{3}

    Now substitute uu back in:

    (2sin(x)1)323\frac{\left(2 \sin{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}

  2. Now simplify:

    (2sin(x)1)323\frac{\left(2 \sin{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}

  3. Add the constant of integration:

    (2sin(x)1)323+constant\frac{\left(2 \sin{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}


The answer is:

(2sin(x)1)323+constant\frac{\left(2 \sin{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                                                3/2
 |   ______________                 (2*sin(x) - 1)   
 | \/ 2*sin(x) - 1 *cos(x) dx = C + -----------------
 |                                          3        
/                                                    
2sin(x)1cos(x)dx=C+(2sin(x)1)323\int \sqrt{2 \sin{\left(x \right)} - 1} \cos{\left(x \right)}\, dx = C + \frac{\left(2 \sin{\left(x \right)} - 1\right)^{\frac{3}{2}}}{3}
The graph
1.000.550.600.650.700.750.800.850.900.950.00.5
The answer [src]
    _______________           _______________       
  \/ -1 + 2*sin(1)    I   2*\/ -1 + 2*sin(1) *sin(1)
- ----------------- + - + --------------------------
          3           3               3             
1+2sin(1)3+21+2sin(1)sin(1)3+i3- \frac{\sqrt{-1 + 2 \sin{\left(1 \right)}}}{3} + \frac{2 \sqrt{-1 + 2 \sin{\left(1 \right)}} \sin{\left(1 \right)}}{3} + \frac{i}{3}
=
=
    _______________           _______________       
  \/ -1 + 2*sin(1)    I   2*\/ -1 + 2*sin(1) *sin(1)
- ----------------- + - + --------------------------
          3           3               3             
1+2sin(1)3+21+2sin(1)sin(1)3+i3- \frac{\sqrt{-1 + 2 \sin{\left(1 \right)}}}{3} + \frac{2 \sqrt{-1 + 2 \sin{\left(1 \right)}} \sin{\left(1 \right)}}{3} + \frac{i}{3}
-sqrt(-1 + 2*sin(1))/3 + i/3 + 2*sqrt(-1 + 2*sin(1))*sin(1)/3
Numerical answer [src]
(0.188144900963713 + 0.333094621053717j)
(0.188144900963713 + 0.333094621053717j)

    Use the examples entering the upper and lower limits of integration.