Mister Exam

Integral of (sqrt2+x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /  ___    \   
 |  \\/ 2  + x/ dx
 |                
/                 
-5                
$$\int\limits_{-5}^{1} \left(x + \sqrt{2}\right)\, dx$$
Integral(sqrt(2) + x, (x, -5, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                       2          
 | /  ___    \          x        ___
 | \\/ 2  + x/ dx = C + -- + x*\/ 2 
 |                      2           
/                                   
$${{x^2}\over{2}}+\sqrt{2}\,x$$
The graph
The answer [src]
          ___
-12 + 6*\/ 2 
$${{5\,2^{{{3}\over{2}}}-25}\over{2}}+{{2^{{{3}\over{2}}}+1}\over{2}}$$
=
=
          ___
-12 + 6*\/ 2 
$$-12 + 6 \sqrt{2}$$
Numerical answer [src]
-3.51471862576143
-3.51471862576143
The graph
Integral of (sqrt2+x) dx

    Use the examples entering the upper and lower limits of integration.