Mister Exam

Integral of 6*x*y dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  6*x*y dx
 |          
/           
0           
016xydx\int\limits_{0}^{1} 6 x y\, dx
Integral((6*x)*y, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    6xydx=y6xdx\int 6 x y\, dx = y \int 6 x\, dx

    1. The integral of a constant times a function is the constant times the integral of the function:

      6xdx=6xdx\int 6 x\, dx = 6 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 3x23 x^{2}

    So, the result is: 3x2y3 x^{2} y

  2. Add the constant of integration:

    3x2y+constant3 x^{2} y+ \mathrm{constant}


The answer is:

3x2y+constant3 x^{2} y+ \mathrm{constant}

The answer (Indefinite) [src]
  /                     
 |                     2
 | 6*x*y dx = C + 3*y*x 
 |                      
/                       
6xydx=C+3x2y\int 6 x y\, dx = C + 3 x^{2} y
The answer [src]
3*y
3y3 y
=
=
3*y
3y3 y
3*y

    Use the examples entering the upper and lower limits of integration.