Mister Exam

Other calculators

Integral of (1-5x+7y+6xy) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x                          
  /                           
 |                            
 |  (1 - 5*x + 7*y + 6*x*y) dy
 |                            
/                             
-x                            
$$\int\limits_{- x}^{2 x} \left(6 x y + \left(7 y + \left(1 - 5 x\right)\right)\right)\, dy$$
Integral(1 - 5*x + 7*y + (6*x)*y, (y, -x, 2*x))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    2                       
 |                                  7*y                       2
 | (1 - 5*x + 7*y + 6*x*y) dy = C + ---- + y*(1 - 5*x) + 3*x*y 
 |                                   2                         
/                                                              
$$\int \left(6 x y + \left(7 y + \left(1 - 5 x\right)\right)\right)\, dy = C + 3 x y^{2} + \frac{7 y^{2}}{2} + y \left(1 - 5 x\right)$$
The answer [src]
                   2            
3*x*(1 - 5*x) + 3*x *(7/2 + 3*x)
$$3 x^{2} \left(3 x + \frac{7}{2}\right) + 3 x \left(1 - 5 x\right)$$
=
=
                   2            
3*x*(1 - 5*x) + 3*x *(7/2 + 3*x)
$$3 x^{2} \left(3 x + \frac{7}{2}\right) + 3 x \left(1 - 5 x\right)$$
3*x*(1 - 5*x) + 3*x^2*(7/2 + 3*x)

    Use the examples entering the upper and lower limits of integration.