Mister Exam

Integral of sin(y)*cos(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  sin(y)*cos(y) dy
 |                  
/                   
0                   
01sin(y)cos(y)dy\int\limits_{0}^{1} \sin{\left(y \right)} \cos{\left(y \right)}\, dy
Integral(sin(y)*cos(y), (y, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(y)u = \sin{\left(y \right)}.

      Then let du=cos(y)dydu = \cos{\left(y \right)} dy and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      sin2(y)2\frac{\sin^{2}{\left(y \right)}}{2}

    Method #2

    1. Let u=cos(y)u = \cos{\left(y \right)}.

      Then let du=sin(y)dydu = - \sin{\left(y \right)} dy and substitute du- du:

      udu\int u\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u)du=udu\int \left(- u\right)\, du = - \int u\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        So, the result is: u22- \frac{u^{2}}{2}

      Now substitute uu back in:

      cos2(y)2- \frac{\cos^{2}{\left(y \right)}}{2}

  2. Add the constant of integration:

    sin2(y)2+constant\frac{\sin^{2}{\left(y \right)}}{2}+ \mathrm{constant}


The answer is:

sin2(y)2+constant\frac{\sin^{2}{\left(y \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          2   
 |                        sin (y)
 | sin(y)*cos(y) dy = C + -------
 |                           2   
/                                
cos2y2-{{\cos ^2y}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
   2   
sin (1)
-------
   2   
12cos212{{1}\over{2}}-{{\cos ^21}\over{2}}
=
=
   2   
sin (1)
-------
   2   
sin2(1)2\frac{\sin^{2}{\left(1 \right)}}{2}
Numerical answer [src]
0.354036709136786
0.354036709136786
The graph
Integral of sin(y)*cos(y) dx

    Use the examples entering the upper and lower limits of integration.