Integral of sin(y)*cos(y) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(y).
Then let du=cos(y)dy and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(y)
Method #2
-
Let u=cos(y).
Then let du=−sin(y)dy and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(y)
-
Add the constant of integration:
2sin2(y)+constant
The answer is:
2sin2(y)+constant
The answer (Indefinite)
[src]
/ 2
| sin (y)
| sin(y)*cos(y) dy = C + -------
| 2
/
−2cos2y
The graph
21−2cos21
=
2sin2(1)
Use the examples entering the upper and lower limits of integration.