Integral of (e^(x+sin(y)))*cos(y) dy
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x+sin(y).
Then let du=cos(y)dy and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
ex+sin(y)
Method #2
-
Rewrite the integrand:
ex+sin(y)cos(y)=exesin(y)cos(y)
-
The integral of a constant times a function is the constant times the integral of the function:
∫exesin(y)cos(y)dy=ex∫esin(y)cos(y)dy
-
Let u=sin(y).
Then let du=cos(y)dy and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
esin(y)
So, the result is: exesin(y)
Method #3
-
Rewrite the integrand:
ex+sin(y)cos(y)=exesin(y)cos(y)
-
The integral of a constant times a function is the constant times the integral of the function:
∫exesin(y)cos(y)dy=ex∫esin(y)cos(y)dy
-
Let u=sin(y).
Then let du=cos(y)dy and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
esin(y)
So, the result is: exesin(y)
-
Add the constant of integration:
ex+sin(y)+constant
The answer is:
ex+sin(y)+constant
The answer (Indefinite)
[src]
/
|
| x + sin(y) x + sin(y)
| E *cos(y) dy = C + e
|
/
∫ex+sin(y)cos(y)dy=C+ex+sin(y)
−ex+exesin(1)
=
−ex+exesin(1)
-exp(x) + exp(x)*exp(sin(1))
Use the examples entering the upper and lower limits of integration.