Mister Exam

Other calculators

Integral of (e^(x+sin(y)))*cos(y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |   x + sin(y)          
 |  E          *cos(y) dy
 |                       
/                        
0                        
01ex+sin(y)cos(y)dy\int\limits_{0}^{1} e^{x + \sin{\left(y \right)}} \cos{\left(y \right)}\, dy
Integral(E^(x + sin(y))*cos(y), (y, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x+sin(y)u = x + \sin{\left(y \right)}.

      Then let du=cos(y)dydu = \cos{\left(y \right)} dy and substitute dudu:

      eudu\int e^{u}\, du

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now substitute uu back in:

      ex+sin(y)e^{x + \sin{\left(y \right)}}

    Method #2

    1. Rewrite the integrand:

      ex+sin(y)cos(y)=exesin(y)cos(y)e^{x + \sin{\left(y \right)}} \cos{\left(y \right)} = e^{x} e^{\sin{\left(y \right)}} \cos{\left(y \right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      exesin(y)cos(y)dy=exesin(y)cos(y)dy\int e^{x} e^{\sin{\left(y \right)}} \cos{\left(y \right)}\, dy = e^{x} \int e^{\sin{\left(y \right)}} \cos{\left(y \right)}\, dy

      1. Let u=sin(y)u = \sin{\left(y \right)}.

        Then let du=cos(y)dydu = \cos{\left(y \right)} dy and substitute dudu:

        eudu\int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now substitute uu back in:

        esin(y)e^{\sin{\left(y \right)}}

      So, the result is: exesin(y)e^{x} e^{\sin{\left(y \right)}}

    Method #3

    1. Rewrite the integrand:

      ex+sin(y)cos(y)=exesin(y)cos(y)e^{x + \sin{\left(y \right)}} \cos{\left(y \right)} = e^{x} e^{\sin{\left(y \right)}} \cos{\left(y \right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      exesin(y)cos(y)dy=exesin(y)cos(y)dy\int e^{x} e^{\sin{\left(y \right)}} \cos{\left(y \right)}\, dy = e^{x} \int e^{\sin{\left(y \right)}} \cos{\left(y \right)}\, dy

      1. Let u=sin(y)u = \sin{\left(y \right)}.

        Then let du=cos(y)dydu = \cos{\left(y \right)} dy and substitute dudu:

        eudu\int e^{u}\, du

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now substitute uu back in:

        esin(y)e^{\sin{\left(y \right)}}

      So, the result is: exesin(y)e^{x} e^{\sin{\left(y \right)}}

  2. Add the constant of integration:

    ex+sin(y)+constante^{x + \sin{\left(y \right)}}+ \mathrm{constant}


The answer is:

ex+sin(y)+constante^{x + \sin{\left(y \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                        
 |  x + sin(y)                  x + sin(y)
 | E          *cos(y) dy = C + e          
 |                                        
/                                         
ex+sin(y)cos(y)dy=C+ex+sin(y)\int e^{x + \sin{\left(y \right)}} \cos{\left(y \right)}\, dy = C + e^{x + \sin{\left(y \right)}}
The answer [src]
   x    x  sin(1)
- e  + e *e      
ex+exesin(1)- e^{x} + e^{x} e^{\sin{\left(1 \right)}}
=
=
   x    x  sin(1)
- e  + e *e      
ex+exesin(1)- e^{x} + e^{x} e^{\sin{\left(1 \right)}}
-exp(x) + exp(x)*exp(sin(1))

    Use the examples entering the upper and lower limits of integration.