Mister Exam

Other calculators

Integral of siny/y^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x          
  /          
 |           
 |  sin(y)   
 |  ------ dx
 |     3     
 |    y      
 |           
/            
0            
$$\int\limits_{0}^{x} \frac{\sin{\left(y \right)}}{y^{3}}\, dx$$
Integral(sin(y)/(y^3), (x, 0, x))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        
 |                         
 | sin(y)          x*sin(y)
 | ------ dx = C + --------
 |    3                3   
 |   y                y    
 |                         
/                          
$${{x\,\sin y}\over{y^3}}$$
The answer [src]
x*sin(y)
--------
    3   
   y    
$${{x\,\sin y}\over{y^3}}$$
=
=
x*sin(y)
--------
    3   
   y    
$$\frac{x \sin{\left(y \right)}}{y^{3}}$$

    Use the examples entering the upper and lower limits of integration.