Mister Exam

Integral of tg4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  tan(4*x)*1 dx
 |               
/                
0                
01tan(4x)1dx\int\limits_{0}^{1} \tan{\left(4 x \right)} 1\, dx
Detail solution
  1. Let u=4xu = 4 x.

    Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

    tan(u)16du\int \frac{\tan{\left(u \right)}}{16}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      tan(u)4du=tan(u)du4\int \frac{\tan{\left(u \right)}}{4}\, du = \frac{\int \tan{\left(u \right)}\, du}{4}

      1. Rewrite the integrand:

        tan(u)=sin(u)cos(u)\tan{\left(u \right)} = \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}

      2. Let u=cos(u)u = \cos{\left(u \right)}.

        Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

        1udu\int \frac{1}{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)- \log{\left(u \right)}

        Now substitute uu back in:

        log(cos(u))- \log{\left(\cos{\left(u \right)} \right)}

      So, the result is: log(cos(u))4- \frac{\log{\left(\cos{\left(u \right)} \right)}}{4}

    Now substitute uu back in:

    log(cos(4x))4- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}

  2. Add the constant of integration:

    log(cos(4x))4+constant- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}+ \mathrm{constant}


The answer is:

log(cos(4x))4+constant- \frac{\log{\left(\cos{\left(4 x \right)} \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                     log(cos(4*x))
 | tan(4*x)*1 dx = C - -------------
 |                           4      
/                                   
logsec(4x)4{{\log \sec \left(4\,x\right)}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9020000-10000
The answer [src]
nan
log(cos4)4-{{\log \left(-\cos 4\right)}\over{4}}
=
=
nan
NaN\text{NaN}
Numerical answer [src]
1.6900933662682
1.6900933662682
The graph
Integral of tg4xdx dx

    Use the examples entering the upper and lower limits of integration.