Mister Exam

Other calculators

Integral of e^x*siny dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi             
  /             
 |              
 |   x          
 |  E *sin(y) dy
 |              
/               
0               
0πexsin(y)dy\int\limits_{0}^{\pi} e^{x} \sin{\left(y \right)}\, dy
Integral(E^x*sin(y), (y, 0, pi))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    exsin(y)dy=exsin(y)dy\int e^{x} \sin{\left(y \right)}\, dy = e^{x} \int \sin{\left(y \right)}\, dy

    1. The integral of sine is negative cosine:

      sin(y)dy=cos(y)\int \sin{\left(y \right)}\, dy = - \cos{\left(y \right)}

    So, the result is: excos(y)- e^{x} \cos{\left(y \right)}

  2. Add the constant of integration:

    excos(y)+constant- e^{x} \cos{\left(y \right)}+ \mathrm{constant}


The answer is:

excos(y)+constant- e^{x} \cos{\left(y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                             
 |  x                         x
 | E *sin(y) dy = C - cos(y)*e 
 |                             
/                              
exsin(y)dy=Cexcos(y)\int e^{x} \sin{\left(y \right)}\, dy = C - e^{x} \cos{\left(y \right)}
The answer [src]
   x
2*e 
2ex2 e^{x}
=
=
   x
2*e 
2ex2 e^{x}
2*exp(x)

    Use the examples entering the upper and lower limits of integration.