Mister Exam

Integral of sinxsecx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  sin(x)*sec(x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin{\left(x \right)} \sec{\left(x \right)}\, dx$$
Integral(sin(x)*sec(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                  
 |                                   
 | sin(x)*sec(x) dx = C - log(cos(x))
 |                                   
/                                    
$$-{{\log \left(1-\sin ^2x\right)}\over{2}}$$
The graph
The answer [src]
-log(cos(1))
$$-\log \cos 1$$
=
=
-log(cos(1))
$$- \log{\left(\cos{\left(1 \right)} \right)}$$
Numerical answer [src]
0.615626470386014
0.615626470386014
The graph
Integral of sinxsecx dx

    Use the examples entering the upper and lower limits of integration.