oo / | | 2 | sin (x)*cos(x) dx | / 0
Integral(sin(x)^2*cos(x), (x, 0, oo))
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3 | 2 sin (x) | sin (x)*cos(x) dx = C + ------- | 3 /
<-1/3, 1/3>
=
<-1/3, 1/3>
AccumBounds(-1/3, 1/3)
Use the examples entering the upper and lower limits of integration.