Mister Exam

Other calculators

Integral of sinx^2*cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                  
  /                  
 |                   
 |     2             
 |  sin (x)*cos(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{\infty} \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx$$
Integral(sin(x)^2*cos(x), (x, 0, oo))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            3   
 |    2                    sin (x)
 | sin (x)*cos(x) dx = C + -------
 |                            3   
/                                 
$$\int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = C + \frac{\sin^{3}{\left(x \right)}}{3}$$
The answer [src]
<-1/3, 1/3>
$$\left\langle - \frac{1}{3}, \frac{1}{3}\right\rangle$$
=
=
<-1/3, 1/3>
$$\left\langle - \frac{1}{3}, \frac{1}{3}\right\rangle$$
AccumBounds(-1/3, 1/3)

    Use the examples entering the upper and lower limits of integration.