Mister Exam

Integral of sinx^4cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
  /                  
 |                   
 |     4             
 |  sin (x)*cos(x) dx
 |                   
/                    
pi                   
--                   
2                    
π2πsin4(x)cos(x)dx\int\limits_{\frac{\pi}{2}}^{\pi} \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx
Integral(sin(x)^4*cos(x), (x, pi/2, pi))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    u4du\int u^{4}\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

    Now substitute uu back in:

    sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

  2. Add the constant of integration:

    sin5(x)5+constant\frac{\sin^{5}{\left(x \right)}}{5}+ \mathrm{constant}


The answer is:

sin5(x)5+constant\frac{\sin^{5}{\left(x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            5   
 |    4                    sin (x)
 | sin (x)*cos(x) dx = C + -------
 |                            5   
/                                 
sin4(x)cos(x)dx=C+sin5(x)5\int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = C + \frac{\sin^{5}{\left(x \right)}}{5}
The graph
1.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.10.5-0.5
The answer [src]
-1/5
15- \frac{1}{5}
=
=
-1/5
15- \frac{1}{5}
Numerical answer [src]
-0.2
-0.2
The graph
Integral of sinx^4cosx dx

    Use the examples entering the upper and lower limits of integration.