1 / | | sin(x)*sin(4*x) dx | / 0
Integral(sin(x)*sin(4*x), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 5 3 | 8*sin (x) 4*sin (x) | sin(x)*sin(4*x) dx = C - --------- + --------- | 5 3 /
4*cos(4)*sin(1) cos(1)*sin(4) - --------------- + ------------- 15 15
=
4*cos(4)*sin(1) cos(1)*sin(4) - --------------- + ------------- 15 15
-4*cos(4)*sin(1)/15 + cos(1)*sin(4)/15
Use the examples entering the upper and lower limits of integration.