Mister Exam

Integral of sinxsin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x)*sin(4*x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(x \right)} \sin{\left(4 x \right)}\, dx$$
Integral(sin(x)*sin(4*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              5           3   
 |                          8*sin (x)   4*sin (x)
 | sin(x)*sin(4*x) dx = C - --------- + ---------
 |                              5           3    
/                                                
$$\int \sin{\left(x \right)} \sin{\left(4 x \right)}\, dx = C - \frac{8 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3}$$
The graph
The answer [src]
  4*cos(4)*sin(1)   cos(1)*sin(4)
- --------------- + -------------
         15               15     
$$\frac{\sin{\left(4 \right)} \cos{\left(1 \right)}}{15} - \frac{4 \sin{\left(1 \right)} \cos{\left(4 \right)}}{15}$$
=
=
  4*cos(4)*sin(1)   cos(1)*sin(4)
- --------------- + -------------
         15               15     
$$\frac{\sin{\left(4 \right)} \cos{\left(1 \right)}}{15} - \frac{4 \sin{\left(1 \right)} \cos{\left(4 \right)}}{15}$$
-4*cos(4)*sin(1)/15 + cos(1)*sin(4)/15
Numerical answer [src]
0.119412428809625
0.119412428809625
The graph
Integral of sinxsin4x dx

    Use the examples entering the upper and lower limits of integration.