Mister Exam

Integral of sinx(1+cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sin(x)*(1 + cos(x)) dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\cos{\left(x \right)} + 1\right) \sin{\left(x \right)}\, dx$$
Integral(sin(x)*(1 + cos(x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of sine is negative cosine:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of sine is negative cosine:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         2
 |                              (1 + cos(x)) 
 | sin(x)*(1 + cos(x)) dx = C - -------------
 |                                    2      
/                                            
$$\int \left(\cos{\left(x \right)} + 1\right) \sin{\left(x \right)}\, dx = C - \frac{\left(\cos{\left(x \right)} + 1\right)^{2}}{2}$$
The graph
The answer [src]
                2   
3            cos (1)
- - cos(1) - -------
2               2   
$$- \cos{\left(1 \right)} - \frac{\cos^{2}{\left(1 \right)}}{2} + \frac{3}{2}$$
=
=
                2   
3            cos (1)
- - cos(1) - -------
2               2   
$$- \cos{\left(1 \right)} - \frac{\cos^{2}{\left(1 \right)}}{2} + \frac{3}{2}$$
3/2 - cos(1) - cos(1)^2/2
Numerical answer [src]
0.813734403268646
0.813734403268646

    Use the examples entering the upper and lower limits of integration.