Mister Exam

Other calculators

Integral of sin(x)*sqrt(1-cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |           ____________   
 |  sin(x)*\/ 1 - cos(x)  dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \sqrt{1 - \cos{\left(x \right)}} \sin{\left(x \right)}\, dx$$
Integral(sin(x)*sqrt(1 - cos(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                              3/2
 |          ____________          2*(1 - cos(x))   
 | sin(x)*\/ 1 - cos(x)  dx = C + -----------------
 |                                        3        
/                                                  
$$\int \sqrt{1 - \cos{\left(x \right)}} \sin{\left(x \right)}\, dx = C + \frac{2 \left(1 - \cos{\left(x \right)}\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
    ____________       ____________       
2*\/ 1 - cos(1)    2*\/ 1 - cos(1) *cos(1)
---------------- - -----------------------
       3                      3           
$$- \frac{2 \sqrt{1 - \cos{\left(1 \right)}} \cos{\left(1 \right)}}{3} + \frac{2 \sqrt{1 - \cos{\left(1 \right)}}}{3}$$
=
=
    ____________       ____________       
2*\/ 1 - cos(1)    2*\/ 1 - cos(1) *cos(1)
---------------- - -----------------------
       3                      3           
$$- \frac{2 \sqrt{1 - \cos{\left(1 \right)}} \cos{\left(1 \right)}}{3} + \frac{2 \sqrt{1 - \cos{\left(1 \right)}}}{3}$$
2*sqrt(1 - cos(1))/3 - 2*sqrt(1 - cos(1))*cos(1)/3
Numerical answer [src]
0.207786452690549
0.207786452690549

    Use the examples entering the upper and lower limits of integration.