1 / | | ____________ | sin(x)*\/ 1 - cos(x) dx | / 0
Integral(sin(x)*sqrt(1 - cos(x)), (x, 0, 1))
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3/2 | ____________ 2*(1 - cos(x)) | sin(x)*\/ 1 - cos(x) dx = C + ----------------- | 3 /
____________ ____________
2*\/ 1 - cos(1) 2*\/ 1 - cos(1) *cos(1)
---------------- - -----------------------
3 3
=
____________ ____________
2*\/ 1 - cos(1) 2*\/ 1 - cos(1) *cos(1)
---------------- - -----------------------
3 3
2*sqrt(1 - cos(1))/3 - 2*sqrt(1 - cos(1))*cos(1)/3
Use the examples entering the upper and lower limits of integration.