Mister Exam

Other calculators

Integral of sin(x)*exp(cos(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |          cos(x + 1)   
 |  sin(x)*e           dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} e^{\cos{\left(x + 1 \right)}} \sin{\left(x \right)}\, dx$$
Integral(sin(x)*exp(cos(x + 1)), (x, 0, 1))
The answer [src]
  1                      
  /                      
 |                       
 |   cos(1 + x)          
 |  e          *sin(x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} e^{\cos{\left(x + 1 \right)}} \sin{\left(x \right)}\, dx$$
=
=
  1                      
  /                      
 |                       
 |   cos(1 + x)          
 |  e          *sin(x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} e^{\cos{\left(x + 1 \right)}} \sin{\left(x \right)}\, dx$$
Integral(exp(cos(1 + x))*sin(x), (x, 0, 1))
Numerical answer [src]
0.435114096155586
0.435114096155586

    Use the examples entering the upper and lower limits of integration.