Integral of arcsinx*cosx*dx dx
The solution
The answer (Indefinite)
[src]
/
/ |
| | sin(x)
| asin(x)*cos(x) dx = C - | --------------------- dx + asin(x)*sin(x)
| | ___________________
/ | \/ -(1 + x)*(-1 + x)
|
/
∫cos(x)asin(x)dx=C+sin(x)asin(x)−∫−(x−1)(x+1)sin(x)dx
pi
--
4
/
|
| asin(x)*cos(x) dx
|
/
0
0∫4πcos(x)asin(x)dx
=
pi
--
4
/
|
| asin(x)*cos(x) dx
|
/
0
0∫4πcos(x)asin(x)dx
Integral(asin(x)*cos(x), (x, 0, pi/4))
Use the examples entering the upper and lower limits of integration.