Integral of arcsinx*cosx*dx dx
The solution
The answer (Indefinite)
[src]
/
/ |
| | sin(x)
| asin(x)*cos(x) dx = C - | --------------------- dx + asin(x)*sin(x)
| | ___________________
/ | \/ -(1 + x)*(-1 + x)
|
/
$$\int \cos{\left(x \right)} \operatorname{asin}{\left(x \right)}\, dx = C + \sin{\left(x \right)} \operatorname{asin}{\left(x \right)} - \int \frac{\sin{\left(x \right)}}{\sqrt{- \left(x - 1\right) \left(x + 1\right)}}\, dx$$
pi
--
4
/
|
| asin(x)*cos(x) dx
|
/
0
$$\int\limits_{0}^{\frac{\pi}{4}} \cos{\left(x \right)} \operatorname{asin}{\left(x \right)}\, dx$$
=
pi
--
4
/
|
| asin(x)*cos(x) dx
|
/
0
$$\int\limits_{0}^{\frac{\pi}{4}} \cos{\left(x \right)} \operatorname{asin}{\left(x \right)}\, dx$$
Integral(asin(x)*cos(x), (x, 0, pi/4))
Use the examples entering the upper and lower limits of integration.