2*pi / | | /x - y\ | sin|-----| dy | \ 2 / | / 0
Integral(sin((x - y)/2), (y, 0, 2*pi))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | /x - y\ /x - y\ | sin|-----| dy = C + 2*cos|-----| | \ 2 / \ 2 / | /
/x\ -4*cos|-| \2/
=
/x\ -4*cos|-| \2/
-4*cos(x/2)
Use the examples entering the upper and lower limits of integration.