Mister Exam

Other calculators

Integral of sin((x-y)/2) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi             
   /              
  |               
  |     /x - y\   
  |  sin|-----| dy
  |     \  2  /   
  |               
 /                
 0                
$$\int\limits_{0}^{2 \pi} \sin{\left(\frac{x - y}{2} \right)}\, dy$$
Integral(sin((x - y)/2), (y, 0, 2*pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |    /x - y\               /x - y\
 | sin|-----| dy = C + 2*cos|-----|
 |    \  2  /               \  2  /
 |                                 
/                                  
$$\int \sin{\left(\frac{x - y}{2} \right)}\, dy = C + 2 \cos{\left(\frac{x - y}{2} \right)}$$
The answer [src]
      /x\
-4*cos|-|
      \2/
$$- 4 \cos{\left(\frac{x}{2} \right)}$$
=
=
      /x\
-4*cos|-|
      \2/
$$- 4 \cos{\left(\frac{x}{2} \right)}$$
-4*cos(x/2)

    Use the examples entering the upper and lower limits of integration.