Mister Exam

Other calculators


sin(x/2)*sin(9*x/2)

Integral of sin(x/2)*sin(9*x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     /x\    /9*x\   
 |  sin|-|*sin|---| dx
 |     \2/    \ 2 /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin{\left(\frac{x}{2} \right)} \sin{\left(\frac{9 x}{2} \right)}\, dx$$
Integral(sin(x/2)*sin(9*x/2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                            
 |                                             
 |    /x\    /9*x\          sin(5*x)   sin(4*x)
 | sin|-|*sin|---| dx = C - -------- + --------
 |    \2/    \ 2 /             10         8    
 |                                             
/                                              
$${{\sin \left(4\,x\right)}\over{8}}-{{\sin \left(5\,x\right)}\over{ 10}}$$
The graph
The answer [src]
  9*cos(9/2)*sin(1/2)   cos(1/2)*sin(9/2)
- ------------------- + -----------------
           40                   40       
$$-{{4\,\sin 5-5\,\sin 4}\over{40}}$$
=
=
  9*cos(9/2)*sin(1/2)   cos(1/2)*sin(9/2)
- ------------------- + -----------------
           40                   40       
$$\frac{\sin{\left(\frac{9}{2} \right)} \cos{\left(\frac{1}{2} \right)}}{40} - \frac{9 \sin{\left(\frac{1}{2} \right)} \cos{\left(\frac{9}{2} \right)}}{40}$$
Numerical answer [src]
0.00129211555282282
0.00129211555282282
The graph
Integral of sin(x/2)*sin(9*x/2) dx

    Use the examples entering the upper and lower limits of integration.