Mister Exam

Other calculators


sinx/(2cosx)/2

Integral of sinx/(2cosx)/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    sin(x)     
 |  ---------- dx
 |  2*cos(x)*2   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{2 \cdot 2 \cos{\left(x \right)}}\, dx$$
Integral(sin(x)/((2*cos(x))*2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |   sin(x)            log(2*cos(x))
 | ---------- dx = C - -------------
 | 2*cos(x)*2                4      
 |                                  
/                                   
$$-{{\log \cos x}\over{4}}$$
The graph
The answer [src]
-log(cos(1)) 
-------------
      4      
$$-{{\log \cos 1}\over{4}}$$
=
=
-log(cos(1)) 
-------------
      4      
$$- \frac{\log{\left(\cos{\left(1 \right)} \right)}}{4}$$
Numerical answer [src]
0.153906617596504
0.153906617596504
The graph
Integral of sinx/(2cosx)/2 dx

    Use the examples entering the upper and lower limits of integration.