1 / | | sin(x) | ---------- dx | 2*cos(x)*2 | / 0
Integral(sin(x)/((2*cos(x))*2), (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | | sin(x) log(2*cos(x)) | ---------- dx = C - ------------- | 2*cos(x)*2 4 | /
-log(cos(1)) ------------- 4
=
-log(cos(1)) ------------- 4
Use the examples entering the upper and lower limits of integration.