Mister Exam

Other calculators

Integral of sin(x)/(sqrt(1-x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     sin(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 - x     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\sqrt{1 - x^{2}}}\, dx$$
Integral(sin(x)/sqrt(1 - x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                       /                        
 |                       |                         
 |    sin(x)             |         sin(x)          
 | ----------- dx = C +  | --------------------- dx
 |    ________           |   ___________________   
 |   /      2            | \/ -(1 + x)*(-1 + x)    
 | \/  1 - x             |                         
 |                      /                          
/                                                  
$$\int \frac{\sin{\left(x \right)}}{\sqrt{1 - x^{2}}}\, dx = C + \int \frac{\sin{\left(x \right)}}{\sqrt{- \left(x - 1\right) \left(x + 1\right)}}\, dx$$
The answer [src]
  1                       
  /                       
 |                        
 |         sin(x)         
 |  ------------------- dx
 |    _______   _______   
 |  \/ 1 + x *\/ 1 - x    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\sqrt{1 - x} \sqrt{x + 1}}\, dx$$
=
=
  1                       
  /                       
 |                        
 |         sin(x)         
 |  ------------------- dx
 |    _______   _______   
 |  \/ 1 + x *\/ 1 - x    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\sqrt{1 - x} \sqrt{x + 1}}\, dx$$
Integral(sin(x)/(sqrt(1 + x)*sqrt(1 - x)), (x, 0, 1))
Numerical answer [src]
0.89324374057649
0.89324374057649

    Use the examples entering the upper and lower limits of integration.