Mister Exam

Other calculators


sqrt(16-x^2)/x

Integral of sqrt(16-x^2)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     _________   
 |    /       2    
 |  \/  16 - x     
 |  ------------ dx
 |       x         
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{16 - x^{2}}}{x}\, dx$$
Integral(sqrt(16 - x^2)/x, (x, 0, 1))
The answer (Indefinite) [src]
                         //         /4\         x                 16              16     \
                         ||- 4*acosh|-| - -------------- + ----------------  for ---- > 1|
  /                      ||         \x/        _________          _________      | 2|    |
 |                       ||                   /      16          /      16       |x |    |
 |    _________          ||                  /  -1 + --    x*   /  -1 + --               |
 |   /       2           ||                 /         2        /         2               |
 | \/  16 - x            ||               \/         x       \/         x                |
 | ------------ dx = C + |<                                                              |
 |      x                ||         /4\        I*x              16*I                     |
 |                       || 4*I*asin|-| + ------------- - ---------------     otherwise  |
/                        ||         \x/        ________          ________                |
                         ||                   /     16          /     16                 |
                         ||                  /  1 - --    x*   /  1 - --                 |
                         ||                 /        2        /        2                 |
                         \\               \/        x       \/        x                  /
$$\int \frac{\sqrt{16 - x^{2}}}{x}\, dx = C + \begin{cases} - \frac{x}{\sqrt{-1 + \frac{16}{x^{2}}}} - 4 \operatorname{acosh}{\left(\frac{4}{x} \right)} + \frac{16}{x \sqrt{-1 + \frac{16}{x^{2}}}} & \text{for}\: \frac{16}{\left|{x^{2}}\right|} > 1 \\\frac{i x}{\sqrt{1 - \frac{16}{x^{2}}}} + 4 i \operatorname{asin}{\left(\frac{4}{x} \right)} - \frac{16 i}{x \sqrt{1 - \frac{16}{x^{2}}}} & \text{otherwise} \end{cases}$$
The graph
The answer [src]
oo - 4*acosh(4)
$$- 4 \operatorname{acosh}{\left(4 \right)} + \infty$$
=
=
oo - 4*acosh(4)
$$- 4 \operatorname{acosh}{\left(4 \right)} + \infty$$
oo - 4*acosh(4)
Numerical answer [src]
176.298785773316
176.298785773316
The graph
Integral of sqrt(16-x^2)/x dx

    Use the examples entering the upper and lower limits of integration.