Mister Exam

Integral of sinx/lnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  sin(x)   
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\log{\left(x \right)}}\, dx$$
Integral(sin(x)/log(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                  /         
 |                  |          
 | sin(x)           | sin(x)   
 | ------ dx = C +  | ------ dx
 | log(x)           | log(x)   
 |                  |          
/                  /           
$$\int \frac{\sin{\left(x \right)}}{\log{\left(x \right)}}\, dx = C + \int \frac{\sin{\left(x \right)}}{\log{\left(x \right)}}\, dx$$
The answer [src]
  1          
  /          
 |           
 |  sin(x)   
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\log{\left(x \right)}}\, dx$$
=
=
  1          
  /          
 |           
 |  sin(x)   
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\log{\left(x \right)}}\, dx$$
Integral(sin(x)/log(x), (x, 0, 1))
Numerical answer [src]
-36.1389274488784
-36.1389274488784

    Use the examples entering the upper and lower limits of integration.