Mister Exam

Other calculators

Integral of (sinx)/(cos^(2)x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |   sin(x)   
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(sin(x)/cos(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                       
 |                        
 |  sin(x)            1   
 | ------- dx = C + ------
 |    2             cos(x)
 | cos (x)                
 |                        
/                         
$$\int \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = C + \frac{1}{\cos{\left(x \right)}}$$
The graph
The answer [src]
       1   
-1 + ------
     cos(1)
$$-1 + \frac{1}{\cos{\left(1 \right)}}$$
=
=
       1   
-1 + ------
     cos(1)
$$-1 + \frac{1}{\cos{\left(1 \right)}}$$
-1 + 1/cos(1)
Numerical answer [src]
0.850815717680926
0.850815717680926

    Use the examples entering the upper and lower limits of integration.