Mister Exam

Other calculators

Integral of sinxcos^2*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                  
  -                  
  2                  
  /                  
 |                   
 |            2      
 |  sin(x)*cos (x) dx
 |                   
/                    
1                    
$$\int\limits_{1}^{\frac{x}{2}} \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$
Integral(sin(x)*cos(x)^2, (x, 1, x/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            3   
 |           2             cos (x)
 | sin(x)*cos (x) dx = C - -------
 |                            3   
/                                 
$$\int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = C - \frac{\cos^{3}{\left(x \right)}}{3}$$
The answer [src]
     3/x\          
  cos |-|      3   
      \2/   cos (1)
- ------- + -------
     3         3   
$$- \frac{\cos^{3}{\left(\frac{x}{2} \right)}}{3} + \frac{\cos^{3}{\left(1 \right)}}{3}$$
=
=
     3/x\          
  cos |-|      3   
      \2/   cos (1)
- ------- + -------
     3         3   
$$- \frac{\cos^{3}{\left(\frac{x}{2} \right)}}{3} + \frac{\cos^{3}{\left(1 \right)}}{3}$$
-cos(x/2)^3/3 + cos(1)^3/3

    Use the examples entering the upper and lower limits of integration.