Mister Exam

Other calculators


sinxcos^2x

Integral of sinxcos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 67                  
 --                  
 10                  
  /                  
 |                   
 |            2      
 |  sin(x)*cos (x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{\frac{67}{10}} \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$
Integral(sin(x)*cos(x)^2, (x, 0, 67/10))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            3   
 |           2             cos (x)
 | sin(x)*cos (x) dx = C - -------
 |                            3   
/                                 
$$-{{\cos ^3x}\over{3}}$$
The graph
The answer [src]
       3/67\
    cos |--|
1       \10/
- - --------
3      3    
$${{1}\over{3}}-{{\cos ^3\left({{67}\over{10}}\right)}\over{3}}$$
=
=
       3/67\
    cos |--|
1       \10/
- - --------
3      3    
$$- \frac{\cos^{3}{\left(\frac{67}{10} \right)}}{3} + \frac{1}{3}$$
Numerical answer [src]
0.0784958039671756
0.0784958039671756
The graph
Integral of sinxcos^2x dx

    Use the examples entering the upper and lower limits of integration.