Mister Exam

Integral of sinxcosax dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
  /                   
 |                    
 |  sin(x)*cos(a*x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{\pi} \sin{\left(x \right)} \cos{\left(a x \right)}\, dx$$
Integral(sin(x)*cos(a*x), (x, 0, pi))
The answer (Indefinite) [src]
                            //                 2                                        \
                            ||              sin (x)                                     |
  /                         ||              -------                for Or(a = -1, a = 1)|
 |                          ||                 2                                        |
 | sin(x)*cos(a*x) dx = C + |<                                                          |
 |                          ||cos(x)*cos(a*x)   a*sin(x)*sin(a*x)                       |
/                           ||--------------- + -----------------        otherwise      |
                            ||          2                  2                            |
                            \\    -1 + a             -1 + a                             /
$$\int \sin{\left(x \right)} \cos{\left(a x \right)}\, dx = C + \begin{cases} \frac{\sin^{2}{\left(x \right)}}{2} & \text{for}\: a = -1 \vee a = 1 \\\frac{a \sin{\left(x \right)} \sin{\left(a x \right)}}{a^{2} - 1} + \frac{\cos{\left(x \right)} \cos{\left(a x \right)}}{a^{2} - 1} & \text{otherwise} \end{cases}$$
The answer [src]
/          0            for Or(a = -1, a = 1)
|                                            
|     1      cos(pi*a)                       
<- ------- - ---------        otherwise      
|        2          2                        
|  -1 + a     -1 + a                         
\                                            
$$\begin{cases} 0 & \text{for}\: a = -1 \vee a = 1 \\- \frac{\cos{\left(\pi a \right)}}{a^{2} - 1} - \frac{1}{a^{2} - 1} & \text{otherwise} \end{cases}$$
=
=
/          0            for Or(a = -1, a = 1)
|                                            
|     1      cos(pi*a)                       
<- ------- - ---------        otherwise      
|        2          2                        
|  -1 + a     -1 + a                         
\                                            
$$\begin{cases} 0 & \text{for}\: a = -1 \vee a = 1 \\- \frac{\cos{\left(\pi a \right)}}{a^{2} - 1} - \frac{1}{a^{2} - 1} & \text{otherwise} \end{cases}$$
Piecewise((0, (a = -1)∨(a = 1)), (-1/(-1 + a^2) - cos(pi*a)/(-1 + a^2), True))

    Use the examples entering the upper and lower limits of integration.