Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 4x² Integral of 4x²
  • Integral of e^(-x/2) Integral of e^(-x/2)
  • Integral of (1-sin(x))/(x+cos(x)) Integral of (1-sin(x))/(x+cos(x))
  • Integral of 1/(sin^2x*cos^2x) Integral of 1/(sin^2x*cos^2x)
  • Identical expressions

  • (sin(two *x))*(cos(x)^(two))
  • ( sinus of (2 multiply by x)) multiply by ( co sinus of e of (x) to the power of (2))
  • ( sinus of (two multiply by x)) multiply by ( co sinus of e of (x) to the power of (two))
  • (sin(2*x))*(cos(x)(2))
  • sin2*x*cosx2
  • (sin(2x))(cos(x)^(2))
  • (sin(2x))(cos(x)(2))
  • sin2xcosx2
  • sin2xcosx^2
  • (sin(2*x))*(cos(x)^(2))dx
  • Similar expressions

  • (sin(2*x))*(cosx^(2))

Integral of (sin(2*x))*(cos(x)^(2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |              2      
 |  sin(2*x)*cos (x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx$$
Integral(sin(2*x)*cos(x)^2, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                              4   
 |             2             cos (x)
 | sin(2*x)*cos (x) dx = C - -------
 |                              2   
/                                   
$$\int \sin{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = C - \frac{\cos^{4}{\left(x \right)}}{2}$$
The graph
The answer [src]
       2                2                2                                                        
1   cos (1)*cos(2)   sin (1)*sin(2)   cos (1)*sin(2)   cos(1)*cos(2)*sin(1)   cos(1)*sin(1)*sin(2)
- - -------------- - -------------- + -------------- - -------------------- - --------------------
2         2                4                4                   2                      4          
$$- \frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)}}{4} - \frac{\sin{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(1 \right)}}{4} - \frac{\cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} - \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos{\left(2 \right)}}{2} + \frac{1}{2}$$
=
=
       2                2                2                                                        
1   cos (1)*cos(2)   sin (1)*sin(2)   cos (1)*sin(2)   cos(1)*cos(2)*sin(1)   cos(1)*sin(1)*sin(2)
- - -------------- - -------------- + -------------- - -------------------- - --------------------
2         2                4                4                   2                      4          
$$- \frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)}}{4} - \frac{\sin{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(1 \right)}}{4} - \frac{\cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{2} + \frac{\sin{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} - \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos{\left(2 \right)}}{2} + \frac{1}{2}$$
1/2 - cos(1)^2*cos(2)/2 - sin(1)^2*sin(2)/4 + cos(1)^2*sin(2)/4 - cos(1)*cos(2)*sin(1)/2 - cos(1)*sin(1)*sin(2)/4
Numerical answer [src]
0.457389435440761
0.457389435440761

    Use the examples entering the upper and lower limits of integration.