1 / | | 2 | sin(2*x)*cos (x) dx | / 0
Integral(sin(2*x)*cos(x)^2, (x, 0, 1))
There are multiple ways to do this integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | 4 | 2 cos (x) | sin(2*x)*cos (x) dx = C - ------- | 2 /
2 2 2 1 cos (1)*cos(2) sin (1)*sin(2) cos (1)*sin(2) cos(1)*cos(2)*sin(1) cos(1)*sin(1)*sin(2) - - -------------- - -------------- + -------------- - -------------------- - -------------------- 2 2 4 4 2 4
=
2 2 2 1 cos (1)*cos(2) sin (1)*sin(2) cos (1)*sin(2) cos(1)*cos(2)*sin(1) cos(1)*sin(1)*sin(2) - - -------------- - -------------- + -------------- - -------------------- - -------------------- 2 2 4 4 2 4
1/2 - cos(1)^2*cos(2)/2 - sin(1)^2*sin(2)/4 + cos(1)^2*sin(2)/4 - cos(1)*cos(2)*sin(1)/2 - cos(1)*sin(1)*sin(2)/4
Use the examples entering the upper and lower limits of integration.