Mister Exam

Integral of sin(2*t) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  sin(2*t) dt
 |             
/              
0              
01sin(2t)dt\int\limits_{0}^{1} \sin{\left(2 t \right)}\, dt
Integral(sin(2*t), (t, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2tu = 2 t.

      Then let du=2dtdu = 2 dt and substitute du2\frac{du}{2}:

      sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

      Now substitute uu back in:

      cos(2t)2- \frac{\cos{\left(2 t \right)}}{2}

    Method #2

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(t)cos(t)dt=2sin(t)cos(t)dt\int 2 \sin{\left(t \right)} \cos{\left(t \right)}\, dt = 2 \int \sin{\left(t \right)} \cos{\left(t \right)}\, dt

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=cos(t)u = \cos{\left(t \right)}.

          Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

          (u)du\int \left(- u\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu\int u\, du = - \int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u22- \frac{u^{2}}{2}

          Now substitute uu back in:

          cos2(t)2- \frac{\cos^{2}{\left(t \right)}}{2}

        Method #2

        1. Let u=sin(t)u = \sin{\left(t \right)}.

          Then let du=cos(t)dtdu = \cos{\left(t \right)} dt and substitute dudu:

          udu\int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          Now substitute uu back in:

          sin2(t)2\frac{\sin^{2}{\left(t \right)}}{2}

      So, the result is: cos2(t)- \cos^{2}{\left(t \right)}

  2. Add the constant of integration:

    cos(2t)2+constant- \frac{\cos{\left(2 t \right)}}{2}+ \mathrm{constant}


The answer is:

cos(2t)2+constant- \frac{\cos{\left(2 t \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                   cos(2*t)
 | sin(2*t) dt = C - --------
 |                      2    
/                            
sin(2t)dt=Ccos(2t)2\int \sin{\left(2 t \right)}\, dt = C - \frac{\cos{\left(2 t \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
1   cos(2)
- - ------
2     2   
12cos(2)2\frac{1}{2} - \frac{\cos{\left(2 \right)}}{2}
=
=
1   cos(2)
- - ------
2     2   
12cos(2)2\frac{1}{2} - \frac{\cos{\left(2 \right)}}{2}
1/2 - cos(2)/2
Numerical answer [src]
0.708073418273571
0.708073418273571
The graph
Integral of sin(2*t) dx

    Use the examples entering the upper and lower limits of integration.