Mister Exam

Integral of sin2t*cost dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
  /                   
 |                    
 |  sin(2*t)*cos(t) dt
 |                    
/                     
0                     
0πsin(2t)cos(t)dt\int\limits_{0}^{\pi} \sin{\left(2 t \right)} \cos{\left(t \right)}\, dt
Integral(sin(2*t)*cos(t), (t, 0, pi))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(t)cos2(t)dt=2sin(t)cos2(t)dt\int 2 \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = 2 \int \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt

      1. Let u=cos(t)u = \cos{\left(t \right)}.

        Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

        (u2)du\int \left(- u^{2}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(t)3- \frac{\cos^{3}{\left(t \right)}}{3}

      So, the result is: 2cos3(t)3- \frac{2 \cos^{3}{\left(t \right)}}{3}

    Method #2

    1. Rewrite the integrand:

      sin(2t)cos(t)=2sin(t)cos2(t)\sin{\left(2 t \right)} \cos{\left(t \right)} = 2 \sin{\left(t \right)} \cos^{2}{\left(t \right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      2sin(t)cos2(t)dt=2sin(t)cos2(t)dt\int 2 \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = 2 \int \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt

      1. Let u=cos(t)u = \cos{\left(t \right)}.

        Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

        (u2)du\int \left(- u^{2}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u2du=u2du\int u^{2}\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(t)3- \frac{\cos^{3}{\left(t \right)}}{3}

      So, the result is: 2cos3(t)3- \frac{2 \cos^{3}{\left(t \right)}}{3}

  2. Add the constant of integration:

    2cos3(t)3+constant- \frac{2 \cos^{3}{\left(t \right)}}{3}+ \mathrm{constant}


The answer is:

2cos3(t)3+constant- \frac{2 \cos^{3}{\left(t \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              3   
 |                          2*cos (t)
 | sin(2*t)*cos(t) dt = C - ---------
 |                              3    
/                                    
sin(2t)cos(t)dt=C2cos3(t)3\int \sin{\left(2 t \right)} \cos{\left(t \right)}\, dt = C - \frac{2 \cos^{3}{\left(t \right)}}{3}
The graph
0.000.250.500.751.001.251.501.752.002.252.502.753.002-2
The answer [src]
4/3
43\frac{4}{3}
=
=
4/3
43\frac{4}{3}
4/3
Numerical answer [src]
1.33333333333333
1.33333333333333

    Use the examples entering the upper and lower limits of integration.