Integral of sin2t*cost dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(t)cos2(t)dt=2∫sin(t)cos2(t)dt
-
Let u=cos(t).
Then let du=−sin(t)dt and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(t)
So, the result is: −32cos3(t)
Method #2
-
Rewrite the integrand:
sin(2t)cos(t)=2sin(t)cos2(t)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(t)cos2(t)dt=2∫sin(t)cos2(t)dt
-
Let u=cos(t).
Then let du=−sin(t)dt and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cos3(t)
So, the result is: −32cos3(t)
-
Add the constant of integration:
−32cos3(t)+constant
The answer is:
−32cos3(t)+constant
The answer (Indefinite)
[src]
/ 3
| 2*cos (t)
| sin(2*t)*cos(t) dt = C - ---------
| 3
/
∫sin(2t)cos(t)dt=C−32cos3(t)
The graph
Use the examples entering the upper and lower limits of integration.