Mister Exam

Other calculators

Integral of sin^2(2x)cos^2(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                       
  -                       
  2                       
  /                       
 |                        
 |     2         2        
 |  sin (2*x)*cos (2*x) dx
 |                        
/                         
0                         
0p2sin2(2x)cos2(2x)dx\int\limits_{0}^{\frac{p}{2}} \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx
Integral(sin(2*x)^2*cos(2*x)^2, (x, 0, p/2))
Detail solution
  1. Rewrite the integrand:

    sin2(2x)cos2(2x)=(12cos(4x)2)(cos(4x)2+12)\sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right) \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute dudu:

      (116cos2(u)16)du\int \left(\frac{1}{16} - \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

          1. Rewrite the integrand:

            cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

              So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

          So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

        The result is: u32sin(2u)64\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

      Now substitute uu back in:

      x8sin(8x)64\frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}

    Method #2

    1. Rewrite the integrand:

      (12cos(4x)2)(cos(4x)2+12)=14cos2(4x)4\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right) \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right) = \frac{1}{4} - \frac{\cos^{2}{\left(4 x \right)}}{4}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(4x)4)dx=cos2(4x)dx4\int \left(- \frac{\cos^{2}{\left(4 x \right)}}{4}\right)\, dx = - \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

        1. Rewrite the integrand:

          cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

            1. Let u=8xu = 8 x.

              Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

              cos(u)8du\int \frac{\cos{\left(u \right)}}{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du8\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

              Now substitute uu back in:

              sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

            So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

        So, the result is: x8sin(8x)64- \frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}

      The result is: x8sin(8x)64\frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}

    Method #3

    1. Rewrite the integrand:

      (12cos(4x)2)(cos(4x)2+12)=14cos2(4x)4\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right) \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right) = \frac{1}{4} - \frac{\cos^{2}{\left(4 x \right)}}{4}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(4x)4)dx=cos2(4x)dx4\int \left(- \frac{\cos^{2}{\left(4 x \right)}}{4}\right)\, dx = - \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

        1. Rewrite the integrand:

          cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

            1. Let u=8xu = 8 x.

              Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

              cos(u)8du\int \frac{\cos{\left(u \right)}}{8}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du8\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

              Now substitute uu back in:

              sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

            So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

        So, the result is: x8sin(8x)64- \frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}

      The result is: x8sin(8x)64\frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}

  3. Add the constant of integration:

    x8sin(8x)64+constant\frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}+ \mathrm{constant}


The answer is:

x8sin(8x)64+constant\frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 |    2         2               sin(8*x)   x
 | sin (2*x)*cos (2*x) dx = C - -------- + -
 |                                 64      8
/                                           
sin2(2x)cos2(2x)dx=C+x8sin(8x)64\int \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx = C + \frac{x}{8} - \frac{\sin{\left(8 x \right)}}{64}
The answer [src]
p    cos(2*p)*sin(2*p)
-- - -----------------
16           32       
p16sin(2p)cos(2p)32\frac{p}{16} - \frac{\sin{\left(2 p \right)} \cos{\left(2 p \right)}}{32}
=
=
p    cos(2*p)*sin(2*p)
-- - -----------------
16           32       
p16sin(2p)cos(2p)32\frac{p}{16} - \frac{\sin{\left(2 p \right)} \cos{\left(2 p \right)}}{32}
p/16 - cos(2*p)*sin(2*p)/32

    Use the examples entering the upper and lower limits of integration.