Integral of sin^2(2x)cos^2(2x) dx
The solution
Detail solution
-
Rewrite the integrand:
sin2(2x)cos2(2x)=(21−2cos(4x))(2cos(4x)+21)
-
There are multiple ways to do this integral.
Method #1
-
Let u=4x.
Then let du=4dx and substitute du:
∫(161−16cos2(u))du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫161du=16u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−16cos2(u))du=−16∫cos2(u)du
-
Rewrite the integrand:
cos2(u)=2cos(2u)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2u)du=2∫cos(2u)du
-
Let u=2u.
Then let du=2du and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2u)
So, the result is: 4sin(2u)
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
The result is: 2u+4sin(2u)
So, the result is: −32u−64sin(2u)
The result is: 32u−64sin(2u)
Now substitute u back in:
8x−64sin(8x)
Method #2
-
Rewrite the integrand:
(21−2cos(4x))(2cos(4x)+21)=41−4cos2(4x)
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos2(4x))dx=−4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫8cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: −8x−64sin(8x)
The result is: 8x−64sin(8x)
Method #3
-
Rewrite the integrand:
(21−2cos(4x))(2cos(4x)+21)=41−4cos2(4x)
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos2(4x))dx=−4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫8cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: −8x−64sin(8x)
The result is: 8x−64sin(8x)
-
Add the constant of integration:
8x−64sin(8x)+constant
The answer is:
8x−64sin(8x)+constant
The answer (Indefinite)
[src]
/
|
| 2 2 sin(8*x) x
| sin (2*x)*cos (2*x) dx = C - -------- + -
| 64 8
/
∫sin2(2x)cos2(2x)dx=C+8x−64sin(8x)
p cos(2*p)*sin(2*p)
-- - -----------------
16 32
16p−32sin(2p)cos(2p)
=
p cos(2*p)*sin(2*p)
-- - -----------------
16 32
16p−32sin(2p)cos(2p)
p/16 - cos(2*p)*sin(2*p)/32
Use the examples entering the upper and lower limits of integration.