Mister Exam

Other calculators

Integral of (sin^2)*x/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  sin (x)*x   
 |  --------- dx
 |      2       
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{x \sin^{2}{\left(x \right)}}{2}\, dx$$
Integral((sin(x)^2*x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                      
 |                                                                       
 |    2                  2       2    2       2    2                     
 | sin (x)*x          cos (x)   x *cos (x)   x *sin (x)   x*cos(x)*sin(x)
 | --------- dx = C - ------- + ---------- + ---------- - ---------------
 |     2                 8          8            8               4       
 |                                                                       
/                                                                        
$$\int \frac{x \sin^{2}{\left(x \right)}}{2}\, dx = C + \frac{x^{2} \sin^{2}{\left(x \right)}}{8} + \frac{x^{2} \cos^{2}{\left(x \right)}}{8} - \frac{x \sin{\left(x \right)} \cos{\left(x \right)}}{4} - \frac{\cos^{2}{\left(x \right)}}{8}$$
The graph
The answer [src]
       2                   
1   sin (1)   cos(1)*sin(1)
- + ------- - -------------
8      8            4      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{4} + \frac{\sin^{2}{\left(1 \right)}}{8} + \frac{1}{8}$$
=
=
       2                   
1   sin (1)   cos(1)*sin(1)
- + ------- - -------------
8      8            4      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{4} + \frac{\sin^{2}{\left(1 \right)}}{8} + \frac{1}{8}$$
1/8 + sin(1)^2/8 - cos(1)*sin(1)/4
Numerical answer [src]
0.0998469989309862
0.0998469989309862

    Use the examples entering the upper and lower limits of integration.