1 / | | 3 | sin (4*x) dx | / 0
Integral(sin(4*x)^3, (x, 0, 1))
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 | 3 cos(4*x) cos (4*x) | sin (4*x) dx = C - -------- + --------- | 4 12 /
3 1 cos(4) cos (4) - - ------ + ------- 6 4 12
=
3 1 cos(4) cos (4) - - ------ + ------- 6 4 12
1/6 - cos(4)/4 + cos(4)^3/12
Use the examples entering the upper and lower limits of integration.