Mister Exam

Other calculators


sin^7(x)*cos^2(x)

Integral of sin^7(x)*cos^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    32                     
     /                     
    |                      
    |       7       2      
    |    sin (x)*cos (x) dx
    |                      
   /                       
     ___                   
12*\/ 3                    
$$\int\limits_{12 \sqrt{3}}^{32} \sin^{7}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$
Integral(sin(x)^7*cos(x)^2, (x, 12*sqrt(3), 32))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                  
 |                               7         3         9           5   
 |    7       2             3*cos (x)   cos (x)   cos (x)   3*cos (x)
 | sin (x)*cos (x) dx = C - --------- - ------- + ------- + ---------
 |                              7          3         9          5    
/                                                                    
$${{35\,\cos ^9x-135\,\cos ^7x+189\,\cos ^5x-105\,\cos ^3x}\over{315 }}$$
The graph
The answer [src]
       5/     ___\        7          3          9/     ___\      3/     ___\      9            5            7/     ___\
  3*cos \12*\/ 3 /   3*cos (32)   cos (32)   cos \12*\/ 3 /   cos \12*\/ 3 /   cos (32)   3*cos (32)   3*cos \12*\/ 3 /
- ---------------- - ---------- - -------- - -------------- + -------------- + -------- + ---------- + ----------------
         5               7           3             9                3             9           5               7        
$${{35\,\cos ^932-135\,\cos ^732+189\,\cos ^532-105\,\cos ^332}\over{ 315}}-{{35\,\cos ^9\left(4\,3^{{{3}\over{2}}}\right)-135\,\cos ^7 \left(4\,3^{{{3}\over{2}}}\right)+189\,\cos ^5\left(4\,3^{{{3}\over{ 2}}}\right)-105\,\cos ^3\left(4\,3^{{{3}\over{2}}}\right)}\over{315 }}$$
=
=
       5/     ___\        7          3          9/     ___\      3/     ___\      9            5            7/     ___\
  3*cos \12*\/ 3 /   3*cos (32)   cos (32)   cos \12*\/ 3 /   cos \12*\/ 3 /   cos (32)   3*cos (32)   3*cos \12*\/ 3 /
- ---------------- - ---------- - -------- - -------------- + -------------- + -------- + ---------- + ----------------
         5               7           3             9                3             9           5               7        
$$- \frac{\cos^{3}{\left(32 \right)}}{3} - \frac{3 \cos^{7}{\left(32 \right)}}{7} + \frac{\cos^{3}{\left(12 \sqrt{3} \right)}}{3} + \frac{3 \cos^{7}{\left(12 \sqrt{3} \right)}}{7} - \frac{\cos^{9}{\left(12 \sqrt{3} \right)}}{9} - \frac{3 \cos^{5}{\left(12 \sqrt{3} \right)}}{5} + \frac{\cos^{9}{\left(32 \right)}}{9} + \frac{3 \cos^{5}{\left(32 \right)}}{5}$$
Numerical answer [src]
-0.0617950017091718
-0.0617950017091718
The graph
Integral of sin^7(x)*cos^2(x) dx

    Use the examples entering the upper and lower limits of integration.