Mister Exam

Other calculators


sin^4(x)cos^2(x)

Integral of sin^4(x)cos^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     4       2      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
01sin4(x)cos2(x)dx\int\limits_{0}^{1} \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx
Integral(sin(x)^4*cos(x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin4(x)cos2(x)=(12cos(2x)2)2(cos(2x)2+12)\sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute dudu:

      (cos3(u)16cos2(u)16cos(u)16+116)du\int \left(\frac{\cos^{3}{\left(u \right)}}{16} - \frac{\cos^{2}{\left(u \right)}}{16} - \frac{\cos{\left(u \right)}}{16} + \frac{1}{16}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos3(u)16du=cos3(u)du16\int \frac{\cos^{3}{\left(u \right)}}{16}\, du = \frac{\int \cos^{3}{\left(u \right)}\, du}{16}

          1. Rewrite the integrand:

            cos3(u)=(1sin2(u))cos(u)\cos^{3}{\left(u \right)} = \left(1 - \sin^{2}{\left(u \right)}\right) \cos{\left(u \right)}

          2. Let u=sin(u)u = \sin{\left(u \right)}.

            Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

            (1u2)du\int \left(1 - u^{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u33- \frac{u^{3}}{3}

              The result is: u33+u- \frac{u^{3}}{3} + u

            Now substitute uu back in:

            sin3(u)3+sin(u)- \frac{\sin^{3}{\left(u \right)}}{3} + \sin{\left(u \right)}

          So, the result is: sin3(u)48+sin(u)16- \frac{\sin^{3}{\left(u \right)}}{48} + \frac{\sin{\left(u \right)}}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos2(u)16)du=cos2(u)du16\int \left(- \frac{\cos^{2}{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos^{2}{\left(u \right)}\, du}{16}

          1. Rewrite the integrand:

            cos2(u)=cos(2u)2+12\cos^{2}{\left(u \right)} = \frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(2u)2du=cos(2u)du2\int \frac{\cos{\left(2 u \right)}}{2}\, du = \frac{\int \cos{\left(2 u \right)}\, du}{2}

              1. Let u=2uu = 2 u.

                Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

                cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                Now substitute uu back in:

                sin(2u)2\frac{\sin{\left(2 u \right)}}{2}

              So, the result is: sin(2u)4\frac{\sin{\left(2 u \right)}}{4}

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            The result is: u2+sin(2u)4\frac{u}{2} + \frac{\sin{\left(2 u \right)}}{4}

          So, the result is: u32sin(2u)64- \frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(u)16)du=cos(u)du16\int \left(- \frac{\cos{\left(u \right)}}{16}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{16}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)16- \frac{\sin{\left(u \right)}}{16}

        1. The integral of a constant is the constant times the variable of integration:

          116du=u16\int \frac{1}{16}\, du = \frac{u}{16}

        The result is: u32sin(2u)64sin3(u)48\frac{u}{32} - \frac{\sin{\left(2 u \right)}}{64} - \frac{\sin^{3}{\left(u \right)}}{48}

      Now substitute uu back in:

      x16sin3(2x)48sin(4x)64\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

    Method #2

    1. Rewrite the integrand:

      (12cos(2x)2)2(cos(2x)2+12)=cos3(2x)8cos2(2x)8cos(2x)8+18\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right) = \frac{\cos^{3}{\left(2 x \right)}}{8} - \frac{\cos^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{8} + \frac{1}{8}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos3(2x)8dx=cos3(2x)dx8\int \frac{\cos^{3}{\left(2 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

        2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

          Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

          (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u36- \frac{u^{3}}{6}

            The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

          Now substitute uu back in:

          sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin3(2x)48+sin(2x)16- \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{16}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(2x)8)dx=cos2(2x)dx8\int \left(- \frac{\cos^{2}{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

            1. Let u=4xu = 4 x.

              Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

              cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

              Now substitute uu back in:

              sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

            So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

        So, the result is: x16sin(4x)64- \frac{x}{16} - \frac{\sin{\left(4 x \right)}}{64}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)8)dx=cos(2x)dx8\int \left(- \frac{\cos{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{8}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)16- \frac{\sin{\left(2 x \right)}}{16}

      1. The integral of a constant is the constant times the variable of integration:

        18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

      The result is: x16sin3(2x)48sin(4x)64\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

    Method #3

    1. Rewrite the integrand:

      (12cos(2x)2)2(cos(2x)2+12)=cos3(2x)8cos2(2x)8cos(2x)8+18\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} \left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right) = \frac{\cos^{3}{\left(2 x \right)}}{8} - \frac{\cos^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{8} + \frac{1}{8}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos3(2x)8dx=cos3(2x)dx8\int \frac{\cos^{3}{\left(2 x \right)}}{8}\, dx = \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

        2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

          Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

          (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

              12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u36- \frac{u^{3}}{6}

            The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

          Now substitute uu back in:

          sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin3(2x)48+sin(2x)16- \frac{\sin^{3}{\left(2 x \right)}}{48} + \frac{\sin{\left(2 x \right)}}{16}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos2(2x)8)dx=cos2(2x)dx8\int \left(- \frac{\cos^{2}{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{8}

        1. Rewrite the integrand:

          cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

            1. Let u=4xu = 4 x.

              Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

              cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

              Now substitute uu back in:

              sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

            So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

        So, the result is: x16sin(4x)64- \frac{x}{16} - \frac{\sin{\left(4 x \right)}}{64}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)8)dx=cos(2x)dx8\int \left(- \frac{\cos{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{8}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)16- \frac{\sin{\left(2 x \right)}}{16}

      1. The integral of a constant is the constant times the variable of integration:

        18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

      The result is: x16sin3(2x)48sin(4x)64\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}

  3. Add the constant of integration:

    x16sin3(2x)48sin(4x)64+constant\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}+ \mathrm{constant}


The answer is:

x16sin3(2x)48sin(4x)64+constant\frac{x}{16} - \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(4 x \right)}}{64}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                             3                     
 |    4       2             sin (2*x)   sin(4*x)   x 
 | sin (x)*cos (x) dx = C - --------- - -------- + --
 |                              48         64      16
/                                                    
2xsin(4x)24sin3(2x)68{{{{2\,x-{{\sin \left(4\,x\right)}\over{2}}}\over{4}}-{{\sin ^3 \left(2\,x\right)}\over{6}}}\over{8}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.2
The answer [src]
                        3                5          
1    cos(1)*sin(1)   sin (1)*cos(1)   sin (1)*cos(1)
-- - ------------- - -------------- + --------------
16         16              24               6       
3sin4+4sin3212192-{{3\,\sin 4+4\,\sin ^32-12}\over{192}}
=
=
                        3                5          
1    cos(1)*sin(1)   sin (1)*cos(1)   sin (1)*cos(1)
-- - ------------- - -------------- + --------------
16         16              24               6       
sin(1)cos(1)16sin3(1)cos(1)24+sin5(1)cos(1)6+116- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{16} - \frac{\sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{24} + \frac{\sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{6} + \frac{1}{16}
Numerical answer [src]
0.0586619776419157
0.0586619776419157
The graph
Integral of sin^4(x)cos^2(x) dx

    Use the examples entering the upper and lower limits of integration.