Mister Exam

Other calculators


sin^4(1-2x)

Integral of sin^4(1-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     4            
 |  sin (1 - 2*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin^{4}{\left(1 - 2 x \right)}\, dx$$
Integral(sin(1 - 2*x)^4, (x, 0, 1))
The graph
The answer [src]
     4           4           3                  3                  2       2   
3*cos (1)   3*sin (1)   5*sin (1)*cos(1)   3*cos (1)*sin(1)   3*cos (1)*sin (1)
--------- + --------- - ---------------- - ---------------- + -----------------
    8           8              8                  8                   4        
$$- \frac{5 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{3 \sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{8} + \frac{3 \cos^{4}{\left(1 \right)}}{8} + \frac{3 \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{3 \sin^{4}{\left(1 \right)}}{8}$$
=
=
     4           4           3                  3                  2       2   
3*cos (1)   3*sin (1)   5*sin (1)*cos(1)   3*cos (1)*sin(1)   3*cos (1)*sin (1)
--------- + --------- - ---------------- - ---------------- + -----------------
    8           8              8                  8                   4        
$$- \frac{5 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{3 \sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{8} + \frac{3 \cos^{4}{\left(1 \right)}}{8} + \frac{3 \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{3 \sin^{4}{\left(1 \right)}}{8}$$
3*cos(1)^4/8 + 3*sin(1)^4/8 - 5*sin(1)^3*cos(1)/8 - 3*cos(1)^3*sin(1)/8 + 3*cos(1)^2*sin(1)^2/4
Numerical answer [src]
0.124025565315207
0.124025565315207
The graph
Integral of sin^4(1-2x) dx

    Use the examples entering the upper and lower limits of integration.