Mister Exam

Other calculators


sin^5xcos^3x

Integral of sin^5xcos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     5       3      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$
Integral(sin(x)^5*cos(x)^3, (x, 0, 1))
The graph
The answer [src]
     8         6   
  sin (1)   sin (1)
- ------- + -------
     8         6   
$$- \frac{\sin^{8}{\left(1 \right)}}{8} + \frac{\sin^{6}{\left(1 \right)}}{6}$$
=
=
     8         6   
  sin (1)   sin (1)
- ------- + -------
     8         6   
$$- \frac{\sin^{8}{\left(1 \right)}}{8} + \frac{\sin^{6}{\left(1 \right)}}{6}$$
-sin(1)^8/8 + sin(1)^6/6
Numerical answer [src]
0.0277463252524934
0.0277463252524934
The graph
Integral of sin^5xcos^3x dx

    Use the examples entering the upper and lower limits of integration.