Integral of 5sintcost dt
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫5sin(tcos(t))dt=5∫sin(tcos(t))dt
-
Don't know the steps in finding this integral.
But the integral is
∫sin(tcos(t))dt
So, the result is: 5∫sin(tcos(t))dt
-
Add the constant of integration:
5∫sin(tcos(t))dt+constant
The answer is:
5∫sin(tcos(t))dt+constant
The answer (Indefinite)
[src]
/ /
| |
| 5*sin(t*cos(t)) dt = C + 5* | sin(t*cos(t)) dt
| |
/ /
∫5sin(tcos(t))dt=C+5∫sin(tcos(t))dt
t
/
|
5* | sin(t*cos(t)) dt
|
/
0
50∫tsin(tcos(t))dt
=
t
/
|
5* | sin(t*cos(t)) dt
|
/
0
50∫tsin(tcos(t))dt
5*Integral(sin(t*cos(t)), (t, 0, t))
Use the examples entering the upper and lower limits of integration.