Mister Exam

Integral of 5sintcost dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  t                   
  /                   
 |                    
 |  5*sin(t*cos(t)) dt
 |                    
/                     
0                     
$$\int\limits_{0}^{t} 5 \sin{\left(t \cos{\left(t \right)} \right)}\, dt$$
Integral(5*sin(t*cos(t)), (t, 0, t))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                             /                
 |                             |                 
 | 5*sin(t*cos(t)) dt = C + 5* | sin(t*cos(t)) dt
 |                             |                 
/                             /                  
$$\int 5 \sin{\left(t \cos{\left(t \right)} \right)}\, dt = C + 5 \int \sin{\left(t \cos{\left(t \right)} \right)}\, dt$$
The answer [src]
    t                 
    /                 
   |                  
5* |  sin(t*cos(t)) dt
   |                  
  /                   
  0                   
$$5 \int\limits_{0}^{t} \sin{\left(t \cos{\left(t \right)} \right)}\, dt$$
=
=
    t                 
    /                 
   |                  
5* |  sin(t*cos(t)) dt
   |                  
  /                   
  0                   
$$5 \int\limits_{0}^{t} \sin{\left(t \cos{\left(t \right)} \right)}\, dt$$
5*Integral(sin(t*cos(t)), (t, 0, t))

    Use the examples entering the upper and lower limits of integration.