Integral of sin^2xcos^5xdx dx
The solution
Detail solution
-
Rewrite the integrand:
sin2(x)cos5(x)1=(1−sin2(x))2sin2(x)cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(u6−2u4+u2)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u4)du=−2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −52u5
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
The result is: 7u7−52u5+3u3
Now substitute u back in:
7sin7(x)−52sin5(x)+3sin3(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))2sin2(x)cos(x)=sin6(x)cos(x)−2sin4(x)cos(x)+sin2(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin4(x)cos(x))dx=−2∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −52sin5(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
The result is: 7sin7(x)−52sin5(x)+3sin3(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))2sin2(x)cos(x)=sin6(x)cos(x)−2sin4(x)cos(x)+sin2(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2sin4(x)cos(x))dx=−2∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −52sin5(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
The result is: 7sin7(x)−52sin5(x)+3sin3(x)
-
Now simplify:
105(15sin4(x)−42sin2(x)+35)sin3(x)
-
Add the constant of integration:
105(15sin4(x)−42sin2(x)+35)sin3(x)+constant
The answer is:
105(15sin4(x)−42sin2(x)+35)sin3(x)+constant
The answer (Indefinite)
[src]
/
| 5 3 7
| 2 5 2*sin (x) sin (x) sin (x)
| sin (x)*cos (x)*1 dx = C - --------- + ------- + -------
| 5 3 7
/
10515sin7x−42sin5x+35sin3x
The graph
5 3 7
2*sin (1) sin (1) sin (1)
- --------- + ------- + -------
5 3 7
10515sin71−42sin51+35sin31
=
5 3 7
2*sin (1) sin (1) sin (1)
- --------- + ------- + -------
5 3 7
−52sin5(1)+7sin7(1)+3sin3(1)
Use the examples entering the upper and lower limits of integration.