Mister Exam

Other calculators


sin^2xcos^5xdx

Integral of sin^2xcos^5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     2       5        
 |  sin (x)*cos (x)*1 dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} 1\, dx$$
Integral(sin(x)^2*cos(x)^5*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                 5         3         7   
 |    2       5               2*sin (x)   sin (x)   sin (x)
 | sin (x)*cos (x)*1 dx = C - --------- + ------- + -------
 |                                5          3         7   
/                                                          
$${{15\,\sin ^7x-42\,\sin ^5x+35\,\sin ^3x}\over{105}}$$
The graph
The answer [src]
       5         3         7   
  2*sin (1)   sin (1)   sin (1)
- --------- + ------- + -------
      5          3         7   
$${{15\,\sin ^71-42\,\sin ^51+35\,\sin ^31}\over{105}}$$
=
=
       5         3         7   
  2*sin (1)   sin (1)   sin (1)
- --------- + ------- + -------
      5          3         7   
$$- \frac{2 \sin^{5}{\left(1 \right)}}{5} + \frac{\sin^{7}{\left(1 \right)}}{7} + \frac{\sin^{3}{\left(1 \right)}}{3}$$
Numerical answer [src]
0.0725283477775366
0.0725283477775366
The graph
Integral of sin^2xcos^5xdx dx

    Use the examples entering the upper and lower limits of integration.