Integral of sin(5x+4) dx
The solution
Detail solution
-
Let u=5x+4.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x+4)
-
Now simplify:
−5cos(5x+4)
-
Add the constant of integration:
−5cos(5x+4)+constant
The answer is:
−5cos(5x+4)+constant
The answer (Indefinite)
[src]
/
| cos(5*x + 4)
| sin(5*x + 4) dx = C - ------------
| 5
/
∫sin(5x+4)dx=C−5cos(5x+4)
The graph
cos(9) cos(4)
- ------ + ------
5 5
5cos(4)−5cos(9)
=
cos(9) cos(4)
- ------ + ------
5 5
5cos(4)−5cos(9)
Use the examples entering the upper and lower limits of integration.