Mister Exam

Integral of sin^2tdt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 157            
 ---            
  50            
  /             
 |              
 |     2        
 |  sin (t)*1 dt
 |              
/               
0               
$$\int\limits_{0}^{\frac{157}{50}} \sin^{2}{\left(t \right)} 1\, dt$$
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |    2               t   sin(2*t)
 | sin (t)*1 dt = C + - - --------
 |                    2      4    
/                                 
$${{t-{{\sin \left(2\,t\right)}\over{2}}}\over{2}}$$
The graph
The answer [src]
         /157\    /157\
      cos|---|*sin|---|
157      \ 50/    \ 50/
--- - -----------------
100           2        
$$-{{25\,\sin \left({{157}\over{25}}\right)-157}\over{100}}$$
=
=
         /157\    /157\
      cos|---|*sin|---|
157      \ 50/    \ 50/
--- - -----------------
100           2        
$$- \frac{\sin{\left(\frac{157}{50} \right)} \cos{\left(\frac{157}{50} \right)}}{2} + \frac{157}{100}$$
Numerical answer [src]
1.57079632544828
1.57079632544828
The graph
Integral of sin^2tdt dx

    Use the examples entering the upper and lower limits of integration.